
Renormalized perturbation series for quantum dots

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 7751

(http://iopscience.iop.org/0953-8984/6/38/013)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 20:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/38
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys.: Condens. M m  6 (1994) 7751-7762. F%nted in the UK 

Renormalized perturbation series for quantum dots 
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Abstrsct. Convergent renormalired perturbation series in pawers of the electron-eleehon 
interadion are proposed for calculating the energy of a quantum dot. The method is illusvafed 
by calculating the gmund aud several excited states of a quantum dot consisting of hvo electrons. 
Comparison behveen the present results and those of a0 exact numerical integration shows the 
great aeeuracy of the proposed method over the whole range of the elebmn-electron coupling 
canstant values. 

1. Introduction 

Recently quantum dots containing one, two and more electrons, say quantum dot ‘helium’ 
and higher ‘elements’ respectively were created and investigated [l, 2, 31. Exchange and 
correlation effects were shown to be of great importance 141 in such systems. 

Most of the previous approaches can be divided into four categories: (1) there are 
the ‘exact’ numerical diagonalization approaches which due to computer power are limited 
to few electron systems [4, 51, (2) numerical simulations based on quantum Monte Carlo 
techniques 161, (3) approximate schemes which neglect or treat correlation in an approximate 
way [7], and (4) classical theories in which correlation is fully acounted for but where the 
quantum mechanical nature of the problem is discarded [S, 91. The latter approach can 
handle a large number of electrons. 

In the present paper we will concentrate on the correlation effect and propose to treat it in 
a more simple way making use of the expansion in a power series in the electron-electron 
(e-e) interaction. It is well known that if one calculates the electron system energy the 
correlation effects manifest themselves already in second order of that expansion. Actually, 
the expansion is in powers of the dimensionless e-e interaction coupling constant A0 = U&, 
where is the characteristic quantum dot dimension, UB = efr2/m*e2 the Bohr radius in 
which E is the static dielectric constant of the medium in which the electrons are. located and 
m* is the electron effective mass. Thus, the effective coupling constant can be easily varied 
by changing the confining potential. T&idy, values 4 2 2 are of interest in present day 
experiments. 

The primitive A-expansion is only useful in the case of small coupling constant, i.e. for 
very narrow quantum dots. In order to cover the whole range of Ao-values we constructed the 
renormalized 1-expansion as was previously used in the case of the non-parabolic oscillator 
problem (see, for example, [lo]). The renormalized A-expansion is constructed by means 
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of two orders of simple I-expansion: the asymptotic expansion for large A-values which 
can be obtained from quasi-classical considerations, and taking into account the symmetric 
properties of the Schrodinger equation. 

For illustrative purposes we consider here the ground state and several excited states of 
the two-electron system in a parabolic quantum dot. We compare the obtained results with 
the. exact numerical solution. An agreement within 1% was found for all I-values. One of 
the advantages of the present approach is that explicit analytic expressions are obtained for 
the energy which are valid for arbitrary magnetic field. 

The present paper is organized as follows. In section 2 the problem is formulated. 
The A-expansion technique is outlined in section 3. In section 4 renormalization series are 
developed which are based on a scaling relation which extends the validity range of the 
A-expansion to large A-values. Through a rescaling of the problem we show in section 5 
that our results are easily extended to the case where a magnetic field is present. In section 
6 the present approach is applied and tested for the two-electron quantum dot problem, and 
our conclusions are given in section I. 

A Matulis and F M Peeters 

2. Formulation of the problem 

We shall consider the system of N electrons in a quasi-two-dmensional quantum dot when 
the electron motion in the z direction is frozen out into the lowest subband. The motion 
of electrons with the effective mass m* in the z = 0 plane is  described by the following 
Schradinger equation: 

where is the confinement fxquency parameter. For future. purposes we will introduce 
dimensionless units by making the following transformation: (1) T + aor, where 
a0 = -, (2) the energy will be measured in units of fioo. Using this dimensionless 
notation we obtain the eigenvalue problem 

( H - E ) Y = O  (2.2) 
with the following Hamiltonian: 

H = Ho + AV (2.3) 
where 

Making use of the solutions of the zero-order Hamiltonian HO we introduce the second- 
quantization representation 

Here the symbols i, i ' ,  j .  j' (i = {mi, ni, si}) stand for the quantum numbers of one-electron 
states of a two-dimensional oscillator. 
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The one-electron energy is 

s(i) = 1 + Imi I + 2 v  (2.7) 
and 

v. . .I .r 6*(i l r i ) 6 * ~ l ~ z ) ~ ( j ' l ~ z ) ~ ( i ' l ~ ~ )  (2.8) &,.s;ssj.s; J d2rl j dZrz 

is the e-e interaction matrix element calculated with the oscillator functions 

1 
IT1 - 721 

1 .  
+(ilr) = -eMi~R(mi,ni[r). (2.9) 6 

The radial wavefunction can be expressed via the associated Laguerre polynomial 

(2.10) 

3. The A-expansion 

Due to the fact that according to (2.7) the one-electron eigenstate energies are discrete and 
equidistant the electron eigenstates are usually degenerate. The simplest way to obtain the 
A-expansion for the degenerate eigenstate energy is to use the so-called resolvent operator 
technique (see, for example, [ 1 I]) as was done for the case of 3D atoms in [12]. The energy 
of the electron system is then defined as a pole of the Green function 

G w W )  =(@ul(H - W ' l @ u s )  (3.1) 
in the complex E-plane, where 

= a:. . . a:@o (3.2) 
are the wavefunctions of the non-interacting electron system, where U represents the 
collections of all electron quantum numbers. The wavefunction is the vacuum state 
without electrons and it can also represent the completely filled inner electron shells. 

In a standard way the Lexpansion of function (3.1) is represented as a sum of diagrams 
the general form of which is represented in figure l(a). The diagrams are made up of 
the vertices of figure I@), corresponding to matrix element (2.8). connected by electron 
lines. In general, in the case where @o includes the inner-closed-shell electrons the diagram 
part without extemal l ies  should be added; but one should not take them into account 
if the quantum dot energy relative to the above closed-shell electron energy is calculated. 
The diagram contribution includes the energy denominator corresponding to each diagram 
cutting across electronic lies. 

If we wish to calculate the electron system energy as the Green function pole we 
should deal with the 'dangerous' diagram cuttings corresponding to the degenerate states 
under consideration. This can be done making use of the Dyson equation and properly 
diagonalizing the mass operator in the space of the degenerate state functions. Then the 
electron system energy is given by the following equation: 

(3.3) 
where symbol A stands for the collection of interacting electron system eigenstate quantum 
numbers, 

E = Eo + MA(E) ,  

(3.4) 
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Figure 1. Green function diagram (a) and vertex @). 

and vi is the electron filling number of electron state i. The mass operator is 

M ~ ( E )  = C c.AM....c.?' (3.5) 
".U' 

where denotes the quantity given by the same type of diagram as shown in figure l(a). 
In contrast to Green function diagrams these mass operator diagrams have no 'dangerous' 
cuttings and only the cuttings between vertices should be taken into account. The coefficients 
C: provide the above-mentioned diagonalization of the mass operator. They should be 
specified for each eigenstate. 

Let us consider the two lowest orders in the A-expansion. For the sake of simplicity 
we shall restrict ourselves to the case where Qo corresponds to the vacuum state without 
electrons. To first order, only diagrams of one type for the mass operator M A ( E )  appear, 
and this consists of the vertex shown in figure l(b) connected in all various ways with the 
external electron lines (U, U'). The contribution of these diagrams is given by (2.8). 

Z - ,  < i' 

i 4 ;  - ;  < i' j 7 . i  = j '  - ~ P, 

j = '  - = j '  IC IC' 

/ 

d 
P 

- ; 4 ;  

(4 (b) 
Figure 2. Second-order diagrams. 

In second order there are diagrams with two elements which are shown in figure 2. 
When calculating the contribution of these diagrams the summation over all one-electron 
states comesponding to the inner electron lines p and q should be canied out. The (a) 
diagram contribution with one of those electron lines p or q belonging to the electron 
configuration considered and the contribution of the (b) diagram give the HartresFock 
approximation, while, the remaining (a) diagram contribution should be interpreted as the 
correlation energy. Thus the electron energy is now made up of each of the electron pair 
contributions which can be calculated separately: 
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In order to improve the accuracy of the electron pair energy calculation it is worth 
replacing the above summation by the solution of a two-electron equation which can be 
derived in the following way. According to (2.8) the above expression can be transformed 
into 

1 
x [&) + e(j’) - ~ ~ 1 - l -  4 (j’ l T Z ) ~  (i’lri) I h  - 721 

1 
W 1 .  n.) (3.7) lrl - TZI 

1 
[&‘I + - lio] ~ 1 .  TZ) = 4(i’ln)4(jflTz). (3.8) 

1+1 - T z ~  

In order to take into account the absence of ‘dangerous’ cuttings in (3.6) the orthogonality 
condition should be fulfilled: 

= /dzrl /dzrZ 4*(ih)4*(jITz) 

where the electron pair wavefunction satisfies the following equation: 

/ d Z n  /dzrz ~*(i’lrl)4*(j‘lr~)Y(rl, r 2 )  = 0. (3.9) 

Introducing centre-of-mass coordinates R = (TI + r2)/2 and relative coordinates 
T = r1 - TZ one can separate the variables and reduce the above equation to a one- 
dimensional non-homogeneous differential equation. This equation can be easily solved 
numerically and we found that it gives much better accuracy than to the d u e t  summation 
of (3.6). 

In summary, up to second order we found the following A-expansion for the energy: 

E = Eo + AE1 fA2Ez. (3.10) 

4. R e n o d i e d  series 

The validity of the above A-expansion (3.10) is restricted to small A-values. Here, we will 
improve the convergence of the A-expansion obtained using a renormalization procedure. 
We construct the renormalized A-expansion following the procedure described in [lo]. The 
main idea of this renormalization is a scaling transformation of the Schrijdinger equation 
which enables us to transform the large-A-value problem into another problem, which in the 
present case is the quasi-classical problem, which can be solved. 

Let us consider the generalized eigenvalue problem which is described by the 
Schrijdinger equation 

The daerence between this equation and the basic equation with the Hamiltonian (2.3) is 
the additional parameter 5 which is included in the kinetic part of the Hamiltonian. As a 
consequence the eigenvalue of this new problem will be a function of two parameters: A 
and 5 .  The eigenvalue of the basic problem is now given by 

The new parameter .$’ can be considered as a reciprocal electron mass. Therefore, the 
limiting case of e + 0 is, the quasi-classical approximation to the quanhun dot problem 
which was studied in [8, 91. 

E @ )  = E(1, A). (4.2) 
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After performing the coordinate transformation r + -&r we find that the eigenvalue 

E O ,  A) = eE(1 ,  (4.3) 

satisfies the scaling relation 

which connects the different eigenvalues on the trajectory A = Aaf3f2  in the (A, f )  plane 
(see the thin solid curve in figure 3). Originally, (see (4.2)), we needed the eigenvalue on 
the line p = 1 (dashed vertical lime in figure 3) but by using the scaling relation (4.3) the 
problem of large LO can be reduced to the problem of small 8. 

0 1 5 
Figure 3. The trajectory in the pa” plane displaying the scaling relation. 

This small-e problem can be solved in quasi-classical approximation by noticing that 
in the case with very large electron mass, i.e. when + 0, the electrons should be located 
near the minimum of the potential, which is determined from 

(4.4) 

One can show that the minimum is located at rk - All3 and consequently E(A) - A2P, 
which leads us to propose the following asymptotic eigenvalue expansion: 

’ E(A) = COA*/~ + c1. (4.5) 

Finally, we adjust the eigenvalue E(5, A) in order to obtain the A-series (3.10) and 
the quasi-classical asymptotic solution (4.5), which are valid in the cases of small A- and 
f-values, respectively. This can be done following [lo] and introducing the mapping of the 
A-parameter onto the ($, A) plane 

$ = 1 - 8  A = @  (4.6) 

with 0 < ,!3 e 1, which is shown in figure 3 by the thick solid line. Then every &-value 
will be replaced by the AI-value as is indicated in figure 3. 

Next, we write down the following expansion 

E(1-  ,8,/?) = bo + blB + b#+ b3P3 + b4B4 

= (bo + bl +bz+b3 + b4) - (bi + 2 6 2  +3b3 + 4 b N  - B )  + .. . (4.7) 
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and compare the first part of it with the A-series (3.10) which is valid for fl  + 0 (A --f 0). 
Making use of (4.3) we have 

= Eo + (E1 - Eo)B + (4.8) 

For f i  + 1 we may compare the second part of the expansion (4.7) with the asymptotic 
expansion (4.5) and find 

=CO+ c1--co Cl-@)+ ... . (4.9) ( 
Comparing (4.8), (4.9) and (4.7) we obtain the expansion coefficients 

EI bz = - + Ez 2 bo = Eo 

b3 = -Eo - 4Ei - ZE2 f ?CO + CI 
b4 

bi = El - Eo 

Eo+ $E1 + Ez - $CO -ci 
and finally arrive at the renormalized series for the considered eigenvalue Eren(A) 

Enn(A) = (1 - B)-'(bo + bi6 + bzB2 + b3B3 + b4B4) (4.10) 
with 

A = B/(1- j3)3/2. (4.11) 

5. Generalization to the case with a magnetic field 

The renormalized A-expansion obtained can be easily generalized to the case of a quantum 
dot with a parabolic confining potential in the presence of a homogeneous magnetic field 
perpendicular to the 2~ plane. In that case the Schrodinger equation (2.1) becomes 

e2E2 ) * ;;*; (. x Vi], + -& { [-$.: + (+*m; + - 8m*$ rj +- igm* m 11 
(5.1) 

where E is the magnetic field seength and g is the effective gyromagnetic factor. 
This eigenvalue problem can be. simplified taking into account the fact that our system 

is invariant under rotation around the z axis. Thus the eigenvalues and wavefunctions 
can be Characterized by the z-components of the total orbital momentum M and spin S. 
Consequently, rescaling the system via 

~ 

and changing the eigenvalue as follows: 

(5.2) 

E + [E - E(M 4- gSm*/m)/2] (5.3) 
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we arrive at the same eigenvalue problem (2.1) with the scaled e-e interaction coupling 
constant 

A Matulis and F M Peeters 

(5.4) 

Therefore, equations (4.10), (4.11), (5.3) and (5.4) give the renormalized A-expansion for 
all values of the coupling constant and the magnetic field strength. 

6. Numerical results 

In order to illustrate the accuracy of the above A-expansion we apply this technique to the 
system of two electrons in a parabolic quantum dot for which there exist exact results to 
which we can compare our approximate results (see, for example, [13]). Indeed introducing 
centre-of-mass coordinates R = ( r l  + r2)/2 and relative coordinates r = r1 - r 2  one 
can separate the variables and reduce the two-electron problem (2.2) into two one-particle 
equations for the electron wavefunction Y(r1, r2) = Y(R)Y(r): 

The cenhe-of-mass equation (6.1) can be solved analytically which gives the eigenvalues 

(6.3) 
where the orbital (M) and the radial (N) quantum numbers are integers. 

The relative electron motion equation (6.2) can be integrated numerically. The solution 
of that equation can be Characterized by two quantum numbers: m for orbital motion, and n 
for radial motion. Keeping in mind that corresponding spin-parts of wavefunctions should 
be taken into account we see that the even m-values correspond to singlet states and the 
odd ones correspond to triplet states. 

The exact energy for the ground singlet and the excited states- a triplet and two excited 
singlet states- is depicted in figure 4 by the solid curves. 

Now we compare these exact results with the results from our A-expansion. Due to the 
degeneracy of the eigenstates of the interacting electron system we are allowed to choose 
the configurations which are most convenient for the calculation. We take the configurations 
which are shown in table 1 where the quantum numbers m and the coefficients C," also are 
given. 

The A-expansion terms obtained are collected in table 2. In this simple two-electron 
case only the contribution of figure 2(a) diagrams should be taken into account The 
corresponding first- and second-order energies are shown in figure 4 by the dotted and dashed 
curves, respectively. Notice that for the ground state the A-expansion can be successfully 
used in the A < 1 region, but for A 2 1 it diverges away from the exact result. For 
the excited states the validity of the A-expansion technique extends over a larger range of 
A-values. 

The asymptotic expansion coefficients in (4.5) were calculated by considering the 
potentials for centreof-mass and relative electron motion. The coefficient co follows 
immediately from the minimum in the potential for relative motion, while the second 
coefficient c, is obtained by replacing that potential by an appropriate parabolic one. The 

E R  = 1 + IMI + 2 N  
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6 

5 

=- 
F 
m 4  
W 
c 

3 

2 

0 1 2 3 4 

h 

Figure 4. The two elecmn eigenvalues: 1, e m u  nnmerical result; 2, first-order &expansion; 
3, second-order A+xpansion. 

Table 1. Terms and configurations. 

Ten0 m Configurationml,nl.sl:mz,n),s~ Coefficients e,” 
smglei 0 00112;00-112 1 

Triplet 1 1 0 112; 0 0 1/2 1 

singlet I 2 2 0 1R; 0 0 -112 U2 
0 0  112; 2 0  -112 1R 
1 0  1R; 1 0  -112 -113 

0 0 1R; 0 1-112 
1 0 “1 0 -112 

-1 0 112; 10 -112 

singletn 0 0 1 112; 0 0 -1/2 1R 
1R 
U2 
U2 

asymptotic expansion coefficients obtained are shown in table 2. In table 3 the renormalized 
A-expansion coefficients which were calculated according to (4.10) are given. 
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lsble 2. Aexpansion and asymptotic expansion mef6cieats. 

Term m En Et E2 m C1 
~ ~~ 

Singlet 0 2 1.2533 -0.3454 1.1906 1.8660 
Triplet 1 3 0.6267 -0.0328 1.1906 1.8660 
Singlet I 2 4 0.47W -0.0112 1.1906 1.8660 
Singlet I1 0 4 0.9400 -0.0872 1.1906 35981 

Table 3. Renormalized Aexpansion coefficients. 

Term m bo bl t2 t3 b4 

Triplet 1 3 -2.3733 02806 0.3947 -0.1101 
Singlet 1 2 4 -3.5300 0.2238 -0.0229 0.5197 
Singlet n 0 4 -3.0600 03828 -0.0188 -0.1137 

singlet o 2 -0.747 ozm -0.479% 0.1397 

The energy plots of versus A for all of those terms are presented in figure 5. Notice 
that the results from the renormalized h-expansion method (curve ‘5’ in figures 5 (axd))  
agree very well with the exact result. The agreement is better than 1% for all A-values. 
For the ground state the dotted curve in figure 5(a) shows the second-order Hamee-Fock 
A-expansion. The second order Hartree-Fock contribution was calculated according to the 
diagram shown in figure 2(a) with one internal line p or q belonging to the ground state 
configuration, We found that the Hartree-Fock contribution gives only half the value of the 
second-order correction. 

I .  condusions 

In conclusion, we have proposed a new approach, which is based on the A-expansion 
technique, including electron-electron correlation in the calculation of the energy levels of 
a quantum dot. This technique was illustrated for the two-electron quantum dot problem 
for which exact results are available in the literature. Our numerical results indicated that 
this expansion is good in the case where h c 1 for the ground state and is valid over a 
larger h-range for the excited states. In the range where A > 1 the A-expansion tends to 
diverge. The latter artefact is remedied by making use of the asymptotic expansion A + 00 

which was obtained from the quasi-classical approximation. This led us U) construct the 
renormalized h-expansion. We found that the renormalied A-expansion calculated up to 
second order coincides within 1% with the exact result for all e-e interaction coupling 
constant values. 

We notice that the main reason for the ease with which we could apply the proposed 
renormalization technique is the simple power dependence of the confining potential and the 
Coulomb electron interaction potential in the electron coordinate operator. We expect that for 
systems with a larger number of electrons a level of accuracy in the eigenvalues of a quantum 
dot to that similar in the present two-electron system can be reached. The incorporation of 
a non-parabolic confining potential and/or the extent of the electron wavefunction in the z 
direction is not straightforward. Nevertheless, the proposed technique can be useful in those 
cases too if the electron-electron interaction dominates the other non-scalable corrections 
which can then he considered as small perturbations. 
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Ground Singlet 

Triplet 

O 1 2 3 4 

h 

Figure 5. Continued on followingpage. 

Finally we would l i e  to mention that the renormalization technique can be applied to the 
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Singlet II 

o 1 2 3 4 

1 

Figure 5. A plot of energy versus .I for: (a) the gmund singlet; @) the fim excited hiplet; (c) 
excited singlet 1, and (d) excited singlet U. The different curves are: 1. exad numerical result; 
2, quasislassical asymptotic expansion; 3, fmtorder a-expansion; 4, second-order &expansion, 
5, second-order renomabed X-expansion; 6, second-order Hxwe-Fock X-expansion. 

calculation of ma& elements of operators when they have a simple power-type dependence 
in the electron position coordinates or momentum. This is the case for the dipole matrix 
element which is used in calculations of the oscillator strength in optical absorption. In that 
case the corresponding A-expansion for maaix elements could be constructed in a similar 
way to what was done in [I41 for the case of 3D atoms. 
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